

Water and Sustainability – The EPRI Research Plan

Bill Smith, Bob Goldstein, and Keith Carns

Water & Sustainability Workshop Washington, DC July 25, 2002

Issues

- Fast growing demand for clean, fresh water
- All regions of US vulnerable to water shortages
- Environmental protection and enhancement
- Dependency of electricity supply and demand on water availability
- Curtailed future growth of electricity demand
- Shortages of current electricity supply
- Electricity grid topology
- Societal and economic sustainability; Electricity Technology Roadmap

Objectives

- Mitigate limitations on economic development and electricity supply & demand caused by water supply/treatment restrictions
- While enhancing and protecting water resource environmental values
- Using EPRI water resource management tools and technology

Approach

- Create and apply
 - Watershed management (macroscale) planning tools
 - Individual facility

 (microscale) water
 management planning tools
 - New water management technologies (microscale)
 - Frameworks for integrating macro and micro scale planning and technology applications

Macroscale Elements

- Water resource management tools
 - Watershed/Ecosytem models
 - Waterbody models
 - Ecological population/community models
- Eco-asset management
- Eco-currency (e.g., Water quality trading)
- GIS planning tools
- Water availability and demand projection tools

Microscale Elements

- Advanced cooling technologies
- Gray water technologies
- Water intake technologies
- Membranes
- Photocatalytic technologies
- Pinch analyses
- Ozone
- Freeze-thaw
- Enhanced Biotreatment
- Desalination
- UV

W&S Results -- There Will Be A Problem

"Generalized Water Budget" by USGS Region for Dry Year—2040

W&S Results -

Cooling Water Withdrawal and Consumption (Evap.) Rates for Common Thermal Power Plant/Cooling System Types

Plant and Cooling System Type	Water Withdrawal (gal/MWh)	Typical Water Consumption (gal/MWh)
Fossil/biomass/waste-fueled steam, once-through cooling	20,000 to 50,000	~300
Fossil/biomass/waste-fueled steam, pond cooling	300 to 600	300-480
Fossil/biomass/waste-fueled steam, cooling towers	500 to 600	~480
Nuclear steam, once-through cooling	25,000 to 60,000	~400
Nuclear steam, pond cooling	500 to 1100	400-720
Nuclear steam, cooling towers	800 to 1100	~720
Natural gas/oil combined-cycle, once-through cooling	7500 to 20,000	~100
Natural gas/oil combined-cycle, cooling towers	~230	~180
Natural gas/oil combined-cycle, dry cooling	~0	~0
Coal/petroleum residuum–fueled combined-cycle, cooling towers	~380*	~200

^{*} includes gasification process water

W&S Results – Unit Energy (Electric) Consumption for Water Supply and Wastewater Treatment

Sector	Surface Water	Ground Water	Wastewater	
kWh/Million gallons				
Domestic	-NA-	700	-NA-	
Commercial	300	700	2500	
Industrial	300	750	2500	
Mining	300	750	2500	
Irrigation	300	700	-NA-	
Livestock	300	700	-NA-	
Power Generation	300	800	-NA-	
Public Supply (includes wide area distribution)	1406	1824	-NA-	
Publicly Owned Treatment Works (typical)		trickling filter activated sludge d wastewater treatment	955 1,322 1,541 1,911	

Water and Sustainability— Research Plan Schedule

Water and Sustainability— Research Plan Project Tasks (1)

- Macroscale: Conduct detailed evaluation of fit between GIS-based software tools used by planners and developers and EPRI's WARMF, SmartPlaces, and other software
- 1B. Microscale: Develop water use/quality balances for industries, agriculture, healthcare, electric grid, and generators; cross-reference them with EPRI water-conserving technologies
- 1C. Macroscale: Identify (PINCH) metropolitan area or subregional water deficit locales (USGS water resource regions are too broad)
- Macro- and Microscale: Determine applicable practices (e.g., ecovalue trading and electricity impacts) and technology solutions for each deficit area. Assure the compatibility of macro- and microscale impacts, including generation/power delivery planning model results.

Water and Sustainability— Research Plan Project Tasks (2)

- **2**A. Enlist potential project hosts and funders
- **2B**, Macro- and Microscale: Perform site evaluations of the technology application opportunities identified in Task 1
- 34 Macroscale: Acquire water resource data, and identify required features in customized EPRI software/models
- 3B. Macro- and Microscale: Identify a select number of potential pilot sites that should optimize the macro/ microscale impacts
- AA, Macroscale: Develop macroscale software to guide to the final determination of the pilot sites, and to evaluate the results of the pilots
- 4B. Microscale: Engineer and install technology pilots

Water and Sustainability— Research Plan Project Tasks (3)

- **5A.** Macroscale: Generalize software tools based on pilot results, and promote their widespread application
- 5B. Microscale: Characterize technology pilot performance and costs for general use by others
 - Microscale: Develop procedures and guidelines manuals; use pilot applications as case studies
 - 7. Package software, procedures/guidelines manuals, and services for widespread use
 - 3. Define and launch new businesses that capitalize on this work and EPRI's general research program

Macroscale/Microscale Interdependencies

-Big River

Big River Watershed

Water Sustainability Workshop

- July 25, 2002
- EPRI Washington DC Headquarters
- Water and energy experts, project hosts, and funders
- Purpose
 - Critique strawman research plan
 - Establish consensus research priorities
 - Evaluate likely sites for regional pilot projects

... and above all

Devise a compelling initiative with a programmatic theme that captures the imagination!